Gujarati
Hindi
7.Gravitation
normal

A satellite of mass $m$ is in a circular orbit of radius $2R_E$ about the earth. The energy required to transfer it to a circular orbit of radius $4R_E$ is (where $M_E$ and $R_E$ is the mass and radius of the earth respectively)

A

$\frac{{G{M_E}m}}{{2{R_E}}}$

B

$\frac{{G{M_E}m}}{{4{R_E}}}$

C

$\frac{{G{M_E}m}}{{8{R_E}}}$

D

$\frac{{G{M_E}m}}{{16{R_E}}}$

Solution

$(\mathrm{TE})_{\mathrm{i}}=\frac{-\mathrm{GM}_{\mathrm{E}} \mathrm{m}}{4 \mathrm{R}} \Rightarrow(\mathrm{TE})_{\mathrm{F}}=\frac{-\mathrm{GM}_{\mathrm{E}} \mathrm{m}}{8 \mathrm{R}}$

Energy required $=(\mathrm{TE})_{\mathrm{F}}-(\mathrm{TE})_{\mathrm{i}}=\frac{\mathrm{GM}_{\mathrm{E}} \mathrm{m}}{8 \mathrm{R}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.