A scientist performs an experiment in order to measure a certain physical quantity and takes $100$ observations. He repeats the same experiment and takes $400$ observations. By doing so,

  • A

    the possible error remains same.

  • B

    the possible error is doubled.

  • C

    the possible error is halved.

  • D

    the possible error is reduced to one fourth.

Similar Questions

A body travels uniformly a distance of $ (13.8 \pm 0.2) m$ in a time $(4.0 \pm 0.3)\, s$. The velocity of the body within error limits is

$Assertion$: In the measurement of physical quantities direct and indirect methods are used.

$Reason$ : The accuracy and precision of measuring instruments along with errors in measurements should be taken into account, while expressing the result.

  • [AIIMS 2017]

The random error in the arithmetic mean of $100$ observations is $x$; then random error in the arithmetic mean of $400$ observations would be

A physical quantity $X$ is related to four measurable quantities $a,\, b,\, c$ and $d$ as follows $X = a^2b^3c^{\frac {5}{2}}d^{-2}$. The percentange error in the measurement of $a,\, b,\, c$ and $d$ are $1\,\%$, $2\,\%$, $3\,\%$ and $4\,\%$ respectively. What is the percentage error in quantity $X$ ? If the value of $X$ calculated on the basis of the above relation is $2.763$, to what value should you round off the result.

Students $I$, $II$ and $III$ perform an experiment for measuring the acceleration due to gravity $(g)$ using a simple pendulum.

They use different lengths of the pendulum and /or record time for different number of oscillations. The observations are shown in the table.

Least count for length $=0.1 \mathrm{~cm}$

Least count for time $=0.1 \mathrm{~s}$

Student Length of the pendulum $(cm)$ Number of oscillations $(n)$ Total time for $(n)$ oscillations $(s)$ Time period $(s)$
$I.$ $64.0$ $8$ $128.0$ $16.0$
$II.$ $64.0$ $4$ $64.0$ $16.0$
$III.$ $20.0$ $4$ $36.0$ $9.0$

If $\mathrm{E}_{\mathrm{I}}, \mathrm{E}_{\text {II }}$ and $\mathrm{E}_{\text {III }}$ are the percentage errors in g, i.e., $\left(\frac{\Delta \mathrm{g}}{\mathrm{g}} \times 100\right)$ for students $\mathrm{I}, \mathrm{II}$ and III, respectively,

  • [IIT 2008]