A shell is fired from a canon with a velocity $V$ at an angle $\theta$ with the horizontal direction. At the highest point in its path, it explodes into two pieces of equal masses. One of the pieces come to rest. The speed of the other piece immediately after the explosion is
$3V\, cos\theta$
$2V\, cos\theta$
$\frac{3}{2}\,V\cos \theta $
$V\, cos\theta$
A force acts on a $3\, gm$ particle in such a way that the position of the particle as a function of time is given by $x = 3t -4t^2 + t^3$, where $x$ is in $meters$ and $t$ is in $seconds$ . The work done during the first $4\, second$ is .............. $\mathrm{mJ}$
A uniform chain of length $2\, m$ is kept on a table such that a length of $60\, cm$ hangs freely from the edge of the table. The total mass of the chain is $4\, kg$. What is the work done in pulling the entire chain on the table ? ................ $\mathrm{J}$
A body of mass $m$ is moving in a circle of radius $r$ with a constant speed $u$. The force on the body is $mv^2/r$ and is directed towards the centre. What is the work done by this force in moving the body over half the circumference of the circle?
A neutron travelling with a velocity $v$ and $K.E.$ $E $ collides perfectly elastically head on with the nucleus of an atom of mass number $A$ at rest. The fraction of total energy retained by neutron is
A mass $m$ slips along the wall of a semispherical surface of radius $R$. The velocity at the bottom of the surface is