A short bar magnet of magnetic movement $5.25 \times 10^{-2} \;J\, T ^{-1}$ is placed with its axis perpendicular to the earth's field direction. At what distance from the centre of the magnet, the resultant field is inclined at $45^{\circ}$ with earth's field on

$(a)$ its normal bisector and

$(b)$ its axis.

Magnitude of the earth's field at the place is given to be $0.42 \;G$. Ignore the length of the magnet in comparison to the distances involved.

Vedclass pdf generator app on play store
Vedclass iOS app on app store

Magnetic moment of the bar magnet, $M=5.25 \times 10^{-2} \,J\,T ^{-1}$

Magnitude of earth's magnetic field at a place, $H=0.42 \,G=0.42 \times 10^{-4} \,T$

$(a)$ The magnetic field at a distance $R$ from the centre of the magnet on the normal bisector is given by the relation:

$B=\frac{\mu_{0} M}{4 \pi R^{3}}$

Where,

$\mu_{0}=$ Permeability of free space $=4 \pi \times 10^{-7} \,T\,m\, A ^{-1}$

When the resultant field is inclined at $45^{\circ}$ with earth's field, $B=H$

$\therefore \frac{\mu_{0} M}{4 \pi R^{3}}=H=0.42 \times 10^{-4}$

$R^{3}=\frac{\mu_{0} M}{0.42 \times 10^{-4} \times 4 \pi}$

$=\frac{4 \pi \times 10^{-7} \times 5.25 \times 10^{-2}}{4 \pi \times 0.42 \times 10^{-4}}=12.5 \times 10^{-5}$

$\therefore R=0.05\, m =5\, cm$

$(b)$ The magnetic field at a distanced $R^{\prime}$ from the centre of the magnet on its axis is given as

$B^{\prime}=\frac{\mu_{0} 2 M}{4 \pi R^{3}}$

The resultant field is inclined at $45^{\circ}$ with earth's field.

$\therefore B^{\prime}=H$

$\frac{\mu_{0} 2 M}{4 \pi\left(R^{\prime}\right)^{3}}=H$

$\left(R^{\prime}\right)^{3}=\frac{\mu_{0} 2 M}{4 \pi \times H}$

$=\frac{4 \pi \times 10^{-7} \times 2 \times 5.25 \times 10^{-2}}{4 \pi \times 0.42 \times 10^{-4}}=25 \times 10^{-5}$

$R^{\prime}=0.063 \,m =6.3\, cm$

Similar Questions

Two like magnetic poles of strength $ 10$  and $40$ $ SI$ units are separated by a distance $30 \,cm$. The intensity of magnetic field is zero on the line joining them

Points $A$ and $B$ are situated perpendicular to the axis of a small bar magnet at large distances $x$ and $3 x$ from its centre on opposite sides. The ratio of the magnetic fields at $A$ and $B$ will be approximately equal to

Magnetic intensity for an axial point due to a short bar magnet of magnetic moment $M$ is given by

Who has first used the properties of showing the direction of the magnet and why ?

A short bar magnet with its north pole facing north forms a neutral point at $P$ in the horizontal plane. If the magnet is rotated by $90^o$ in the horizontal plane, the net magnetic induction at $P$ is (Horizontal component of earth’s magnetic field = ${B_H}$)