- Home
- Standard 11
- Physics
A simple pendulum of length $l$ is made to oscillate with an amplitude of $45$ degrees. The acceleration due to gravity is $g$. Let $T_0=2 \pi \sqrt{l / g}$. The time period of oscillation of this pendulum will be
$T_0$ irrespective of the amplitude
slightly less than $T_{0}$
slightly more than $T_0$
dependent on whether it swings in a plane aligned with the north-south or east-west directions
Solution

(c)
For a simple pendulum, equation of tangential motion is
$F_T=-m g \sin \theta$
$\Rightarrow m l \alpha=-m g \sin \theta$
$\Rightarrow \frac{d^2 \theta}{d t^2}+g \frac{l}{l} \sin \theta=0$
Now, $\quad \sin \theta=\theta-\frac{\theta^3}{3 !}+\ldots$
Approximately, $\sin \theta \approx \theta\left(1-\frac{\theta^2}{6}\right)$
Now, replacing $\theta_{ av }^2=\frac{1}{2} \theta_0^2$
We have, $\frac{d^2 \theta}{d t^2}+\frac{g}{l}\left(1-\frac{\theta_0^2}{12}\right) \theta=0$
$\therefore \quad \omega=\frac{g}{l}\left(1-\frac{\theta_0^2}{12}\right)$
So, time period of oscillation is
$T=\frac{2 \pi}{\omega}=2 \pi \sqrt{\frac{g}{l}}\left[\left(1-\frac{\theta_0^2}{12}\right)^{-\frac{1}{2}}\right]$
Now, taking binomial approximately
$T \approx 2 \pi \sqrt{\frac{g}{l}} \cdot\left(1+\frac{\theta_l^2}{24}\right)$
Clearly, this is greater than $T_0=2 \pi \sqrt{\frac{g}{l}}$.