5.Work, Energy, Power and Collision
hard

આકૃતિમાં દર્શાવ્યા પ્રમાણે એક $R=3\, {m}$ ત્રિજયાના અર્ધગોળા ટોચ પરથી એક નાનો બ્લોક નીચે તરફ સરકે છે. બ્લોક જ્યારે ગોળાની સાથે સંપર્ક ગુમાવે તે ઊંચાઈ $h$ કેટલા $......  \;\;m$.હશે? (બ્લોક અને ગોળા વચ્ચે કોઈ ઘર્ષણ નથી તેમ ધારો)

A

$1$

B

$2$

C

$3$

D

$4$

(JEE MAIN-2021)

Solution

on balancing

$m g \cos \theta=\frac{m v^{2}}{R}….(1)$

$\cos \theta=\frac{h}{R}$

Energy conservation

$m g\{R-h\}=\frac{1}{2} m v^{2}….(2)$

From $(1)$ and $(2) \Rightarrow m g\left\{\frac{h}{R}\right\}=\frac{2 m g\{R-h\}}{R}$

$h=\frac{2 R}{3}=2\, m$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.