6.System of Particles and Rotational Motion
hard

A small particle of mass $m$ is projected at an angle $\theta $ with the $x-$ axis with an initial velocity $v_0$ in the $x-y$ plane as shown in the figure. At a time $t < \frac{{{v_0}\,\sin \,\theta }}{g}$, the angular momentum of the particle is

A

$ - mg\,{v_0}{t^2}\,\cos \,\theta\, \hat j$

B

$ mg\,{v_0}t\,\cos \,\theta\, \hat k$

C

$ - \frac{1}{2}\,mg\,{v_0}{t^2}\,\cos \,\theta \,\hat k$

D

$\frac{1}{2}\,mg\,{v_0}{t^2}\,\cos \,\theta \,\hat i$

(AIEEE-2010)

Solution

$\overrightarrow L  = m\left( {\overrightarrow r  \times \overrightarrow v } \right)$

$\overrightarrow L  = m\left[ {{v_0}\cos \theta t\hat i + ({v_0}\sin \theta t – \frac{1}{2}g{t^2})\hat j} \right]$

$\,\,\,\,\,\,\,\,\,\,\,\,\,\, \times \left[ {{v_0}\cos \theta \hat i + \left( {{v_0}\sin \theta  – gt} \right)\hat j} \right]$

$ = m{v_0}\cos \theta t\left[ { – \frac{1}{2}gt} \right]\hat k$

$ =  – \frac{1}{2}mg{v_0}{t^2}\cos \theta \hat k$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.