A solid sphere of mass $m$ and radius $R$ is rotating about its diameter. A solid cylinder of the same mass and same radius is also rotating about its geometrical axis with an angular speed twice that of the sphere. The ratio of their kinetic energies of rotation $E_{sphere}/E_{cylinder}$ will be

  • [NEET 2016]
  • A

    $1:4$

  • B

    $3:1$

  • C

    $2:3$

  • D

    $1:5$

Similar Questions

A disc of mass $m$ and radius $r$ is free to rotate about its centre as shown in the figure. A string is wrapped over its rim and a block of mass $m$ is attached to the free end of the string. The system is released from rest. The speed of the block as it descends through a height $h$, is .....

A thin uniform rod of length $2\,m$. cross sectional area ' $A$ ' and density ' $d$ ' is rotated about an axis passing through the centre and perpendicular to its length with angular velocity $\omega$. If value of $\omega$ in terms of its rotational kinetic energy $E$ is $\sqrt{\frac{\alpha E}{ Ad }}$ then the value of $\alpha$ is $...........$

  • [JEE MAIN 2023]

Rotational kinetic energy of a given body about an axis is proportional to

A solid cylinder $P$ rolls without slipping from rest down an inclined plane attaining a speed $v_p$ at the bottom. Another smooth solid cylinder $Q$ of same mass and dimensions slides without friction from rest down the inclined plane attaining a speed $v_q$ at the bottom. The ratio of the speeds $\frac{v_q}{v_p}$ is

  • [KVPY 2014]

A hollow sphere of mass $m$ filled with a non-viscous liquid of same mass $m$ is released on a slope inclined at angle $q$ with the horizontal. The friction between the sphere and the slope is sufficient to prevent sliding and frictional forces between the inner surface of the sphere and the liquid is negligible. After descending a certain height ratio of translational and rotational kinetic energies is found to be $x:y$, find the numerical value of expression $(x+y)_{min}.$