Gujarati
Hindi
6.System of Particles and Rotational Motion
medium

A constant power is supplied to a rotating disc. Angular velocity $\left( \omega  \right)$ of disc varies with number of rotations $(n)$ made by the disc as

A

$\omega  \propto {\left( n \right)^{1/3}}$

B

$\omega  \propto {\left( n \right)^{3/2}}$

C

$\omega  \propto {\left( n \right)^{2/3}}$

D

$\omega  \propto {\left( n \right)^2}$

Solution

$P=\tau \cdot \omega$

$P=I \alpha \cdot \omega=I\left(\omega \frac{d \omega}{d \theta}\right) \cdot \omega$

$\omega^{2} \mathrm{d} \omega=\frac{\mathrm{P}}{\mathrm{I}} \mathrm{d} \theta$

$\omega \propto \theta^{1 / 3}$

$\omega \propto(\mathrm{n})^{1 / 3}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.