2. Electric Potential and Capacitance
hard

A solid sphere of radius $R$ carries a charge $(Q+q)$ distributed uniformly over its volume. A very small point like piece of it of mass $m$ gets detached from the bottom of the sphere and falls down vertically under gravity. This piece carries charge $q.$ If it acquires a speed $v$ when it has fallen through a vertical height $y$ (see figure), then :

(assume the remaining portion to be spherical).

A

$v^{2}=2 y\left[\frac{q Q}{4 \pi \epsilon_{0} R(R+y) m}+g\right]$

B

$v^{2}=y\left[\frac{q Q}{4 \pi \epsilon_{0} R^{2} y m}+g\right]$

C

$v^{2}=2 y\left[\frac{q Q R}{4 \pi \epsilon_{0}(R+y)^{3} m}+g\right]$

D

$v^{2}=y\left[\frac{q Q}{4 \pi \epsilon_{0} R(R+y) m}+g\right]$

(JEE MAIN-2020)

Solution

$\frac{ kQq }{ R }+ mgy$

$=\frac{ kQq }{ R + y }+\frac{1}{2} mv ^{2}$

$v ^{2}=2 gy +\frac{2 kQqy }{ mR ( R + y )}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.