A solid spherical conducting shell has inner radius a and outer radius $2a$. At the center of the shell a point charge $+Q$ is located . What must the charge of the shell be in order for the charge density on the inner and outer surfaces of the shell to be exactly equal?

822-569

  • A

    $-5Q$

  • B

    $+3Q$

  • C

    $-4Q$

  • D

    $+4Q$

Similar Questions

Two condensers $C_1$ and $C_2$ in a circuit are joined as shown in figure. The potential of point $A$ is $V_1$ and that of $B$ is $V_2$. The potential of point $D$ will be

Two charges  $ + 3.2\, \times \,{10^{ - 19}}\,C$ and $ - 3.2\, \times \,{10^{ - 19}}\,C$ kept $2.4\,\mathop A\limits^o $ apart forms a dipole. If it is kept in uniform electric field of intensity $4\, \times \,{10^{5\,}}\,volt/m$ then what will be its potential energy in stable equilibrium

An electric dipole of dipole moment $\vec P$ is lying along a uniform electric field $\vec E$ . The work done in rotating the dipole by $90^o$ is

An electric dipole is situated in an electric field of uniform intensity $E$ whose dipole moment is $p$ and moment of inertia is $I$. If the dipole is displaced slightly from the equilibrium position, then the angular frequency of its oscillations is

Two thin wire rings each having a radius $R$ are placed at a distance $d$ apart with their axes coinciding. The charges on the two rings are $+ q$ and $-q$. The potential difference between the centres of the two rings is