A sound absorber attenuates the sound level by $20\,\, dB$. The intensity decrease by a factor of

  • A

    $100$

  • B

    $1000$

  • C

    $10000$

  • D

    $10$

Similar Questions

A transverse wave is described by the equation $y = {y_0}\,\sin \,2\pi \left( {ft - \frac{x}{\lambda }} \right)$ . The maximum particle velocity is equal to four times the wave velocity if

Two tuning forks $A$ and $B$ produce $8\,beats/s$ when sounded together. $A$ gas column $37.5\,cm$ long in a pipe closed at one end resonate to its fundamental mode with fork $A$ whereas a column of length $38.5\,cm$ of the same gas in a similar pipe is required for resonance with fork $B$. The frequencies of these two tuning forks, are

A pulse on a string is shown in the figure. $P$ is particle of the string. Then state which of the following is incorrect

A car $P$ approaching a crossing at a speed of $10\,m/s$ sounds a horn of frequency $700 \,Hz$ when $40\,m$ in front of the crossing. Speed of sound in air is $340\,m/s$. Another car $Q$ is at rest on a road which is perpendicular to the road on which car $P$ is reaching the crossing (see figure). The driver of car $Q$ hears the sound of the horn of car $P$ when he is $30\,m$ in front of the crossing. The apparent frequency heard by the driver of car $Q$ is ..... $Hz$

When a string is divided into three segments of length $l_1,\,l_2$ and $l_3,$ the fundamental frequencies of these three segments are $v_1,\,v_2$ and $v_3$ respectively. The original fundamental frequency $(v)$ of the string is