A sphere encloses an electric dipole with charge $\pm 3 \times 10^{-6} \;\mathrm{C} .$ What is the total electric flux across the sphere?......${Nm}^{2} / {C}$
$-3 \times 10^{-6}$
$0$
$3 \times 10^{-6}$
$6 \times 10^{-6}$
A charged particle $q$ is placed at the centre $O$ of cube of length $L$ $(A\,B\,C\,D\,E\,F\,G\,H)$. Another same charge $q$ is placed at a distance $L$ from $O$.Then the electric flux through $BGFC$ is
A positive charge $q$ is kept at the center of a thick shell of inner radius $R_1$ and outer radius $R_2$ which is made up of conducting material. If $\phi_1$ is flux through closed gaussian surface $S_1$ whose radius is just less than $R_1$ and $\phi_2$ is flux through closed gaussian surface $S_2$ whose radius is just greater than $R_1$ then:-
A charge of $1$ coulomb is located at the centre of a sphere of radius $10 \,cm$ and a cube of side $20 \,cm$. The ratio of outgoing flux from the sphere and cube will be
Two charged thin infinite plane sheets of uniform surface charge density $\sigma_{+}$ and $\sigma_{-}$ where $\left|\sigma_{+}\right|>\left|\sigma_{-}\right|$ intersect at right angle. Which of the following best represents the electric field lines for this system
Figure shows the electric lines of force emerging from a charged body. If the electric field at $A$ and $B$ are ${E_A}$ and ${E_B}$ respectively and if the displacement between $A$ and $B$ is $r$ then