- Home
- Standard 12
- Physics
$q_1, q_2, q_3$ and $q_4$ are point charges located at point as shown in the figure and $S$ is a spherical Gaussian surface of radius $R$. Which of the following is true according to the Gauss's law

$\oint\limits_s {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\overrightarrow A = \frac{{{q_1} + {q_2} + {q_3}}}{{2\,{ \in _0}}}}$
$\oint\limits_s {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\overrightarrow A = \frac{{{q_1} + {q_2} + {q_3}}}{{{ \in _0}}}} $
$\oint\limits_s {\left( {{{\vec E}_1} + {{\vec E}_2} + {{\vec E}_3}} \right).d\overrightarrow A = \frac{{{q_1} + {q_2} + {q_3} + {q_4}}}{{{ \in _0}}}} $
None of the above
Solution
By using $\int {\overrightarrow {\rm{E}} } \cdot \overrightarrow {{\rm{dA}}} = \frac{1}{{{ \in _0}}}\left( {{{\rm{Q}}_{{\rm{enc}}}}} \right);$
Here $\overrightarrow{\mathrm{E}} \rightarrow$ net electric field.