The magnitude of the average electric field normally present in the atmosphere just above the surface of the Earth is about $150\, N/C$, directed inward towards the center of the Earth . This gives the total net surface charge carried by the Earth to be......$kC$ [Given ${\varepsilon _0} = 8.85 \times {10^{ - 12}}\,{C^2}/N - {m^2},{R_E} = 6.37 \times {10^6}\,m$]
$ + 670$
$ - 670$
$ - 680$
$ + 680$
In a region of space the electric field is given by $\vec E = 8\hat i + 4\hat j+ 3\hat k$. The electric flux through a surface of area $100\, units$ in the $x-y$ plane is....$units$
A positive charge $q$ is kept at the center of a thick shell of inner radius $R_1$ and outer radius $R_2$ which is made up of conducting material. If $\phi_1$ is flux through closed gaussian surface $S_1$ whose radius is just less than $R_1$ and $\phi_2$ is flux through closed gaussian surface $S_2$ whose radius is just greater than $R_1$ then:-
A cone of base radius $R$ and height $h$ is located in a uniform electric field $\vec E$ parallel to its base. The electric flux entering the cone is
The electric flux for Gaussian surface A that enclose the charged particles in free space is (given $q_1$ = $-14\, nC$, $q_2$ = $78.85\, nC$, $q_3$ = $-56 \,nC$)
A charge $+q$ is placed somewhere inside the cavity of a thick conducting spherical shell of inner radius $R_1$ and outer radius $R_2$. A charge $+Q$ is placed at a distance $r > R_2$ from the centre of the shell. Then the electric field in the hollow cavity