A spherical conducting shell of inner radius $r_1$ and outer radius $r_2$ has a charge $Q. $
$(a)$ A charge $q$ is placed at the centre of the shell. What is the surface charge density on the inner and outer surfaces of the shell?
$(b)$ Is the electric field inside a cavity (with no charge) zero, even if the shell is not spherical, but has any irregular shape? Explain.
$(a)$ Charge placed at the centre of a shell is $+q$. Hence, a charge of magnitude $-q$ will be induced to the inner surface of the shell. Therefore, total charge on the inner surface of the shell is $- q$.
Surface charge density at the inner surface of the shell is given by the relation,
$\sigma_{1}=\frac{\text { Total charge }}{\text { Inner surface area }}=\frac{-q}{4 \pi r_{1}^{2}}$
A charge of $+q$ is induced on the outer surface of the shell. A charge of magnitude $Q$ is placed on the outer surface of the shell. Therefore, total charge on the outer surface of the shell is $Q+q .$ Surface charge density at the outer surface of the shell,
$\sigma_{2}=\frac{\text { Toter surface of the shell, }}{\text { Outer surface area }}=\frac{Q+q}{4 \pi r_{2}^{2}}$
$(b)$ Yes
The electric field intensity inside a cavity is zero, even if the shell is not spherical and has any irregular shape. Take a closed loop such that a part of it is inside the cavity along a field line while the rest is inside the conductor. Net work done by the field in carrying a test charge over a closed loop is zero because the field inside the conductor is zero. Hence, electric field is zero, whatever is the shape.
Figure shows a solid conducting sphere of radius $1 m$, enclosed by a metallic shell of radius $3 \,m$ such that their centres coincide. If outer shell is given a charge of $6 \,\mu C$ and inner sphere is earthed, find magnitude charge on the surface of inner shell is ............. $\mu C$
Two thin conducting shells of radii $R$ and $3R$ are shown in the figure. The outer shell carries a charge $+ Q$ and the inner shell is neutral. The inner shell is earthed with the help of a switch $S$.
$A$ and $B$ are concentric conducting spherical shells. $A$ is given a positive charge while $B$ is earthed. Then :-
Two isolated metallic solid spheres of radii $R$ and $2 R$ are charged such that both have same charge density $\sigma$. The spheres are then connected by a thin conducting wire. If the new charge density of the bigger sphere is $\sigma^{\prime}$. The ratio $\frac{\sigma^{\prime}}{\sigma}$ is
Two charged spherical conductors of radius $R_{1}$ and $\mathrm{R}_{2}$ are connected by a wire. Then the ratio of surface charge densities of the spheres $\left(\sigma_{1} / \sigma_{2}\right)$ is :