Figure shows a solid conducting sphere of radius $1 m$, enclosed by a metallic shell of radius $3 \,m$ such that their centres coincide. If outer shell is given a charge of $6 \,\mu C$ and inner sphere is earthed, find magnitude charge on the surface of inner shell is ............. $\mu C$

213589-q

  • A

    $1$

  • B

    $-2$

  • C

    $4$

  • D

    $6$

Similar Questions

Assertion : In a cavity within a conductor, the electric field is zero.

Reason : Charges in a conductor reside only at its surface

  • [AIIMS 2007]

A metallic spherical shell has an inner radius $R_1$ and outer radius $R_2$. A charge $Q$ is placed at the centre of the spherical cavity. What will be surface charge density on the inner surface

As shown in the figure, a point charge $Q$ is placed at the centre of conducting spherical shell of inner radius a and outer radius $b$. The electric field due to charge $Q$ in three different regions I, II and III is given by: $( I : r < a , II : a < r < b , III : r > b )$

  • [JEE MAIN 2023]

Two thin conducting shells of radii $R$ and $3R$ are shown in the figure. The outer shell carries a charge $+ Q$ and the inner shell is neutral. The inner shell is earthed with the help of a switch $S$.

Two charged spherical conductors of radius $R_{1}$ and $\mathrm{R}_{2}$ are connected by a wire. Then the ratio of surface charge densities of the spheres $\left(\sigma_{1} / \sigma_{2}\right)$ is :

  • [NEET 2021]