- Home
- Standard 12
- Physics
आंतरिक त्रिज्या $r_{1}$ तथा बाह्य त्रिज्या $r_{2}$ वाले एक गोलीय चालक खोल ( कोश ) पर $Q$ आवेश है।
$(a)$ खोल के केंद्र पर एक आवेश $q$ रखा जाता है। खोल के भीतरी और बाहरी पृष्ठों पर पृष्ठ आवेश घनत्व क्या है?
$(b)$ क्या किसी कोटर ( जो आवेश विहीन है ) में विध्यूत क्षेत्र शून्य होता है, चाहे खोल गोलीय न होकर किसी भी अनियमित आकार का हो? स्पष्ट कीजिए।
Solution
$(a)$ Charge placed at the centre of a shell is $+q$. Hence, a charge of magnitude $-q$ will be induced to the inner surface of the shell. Therefore, total charge on the inner surface of the shell is $- q$.
Surface charge density at the inner surface of the shell is given by the relation,
$\sigma_{1}=\frac{\text { Total charge }}{\text { Inner surface area }}=\frac{-q}{4 \pi r_{1}^{2}}$
A charge of $+q$ is induced on the outer surface of the shell. A charge of magnitude $Q$ is placed on the outer surface of the shell. Therefore, total charge on the outer surface of the shell is $Q+q .$ Surface charge density at the outer surface of the shell,
$\sigma_{2}=\frac{\text { Toter surface of the shell, }}{\text { Outer surface area }}=\frac{Q+q}{4 \pi r_{2}^{2}}$
$(b)$ Yes
The electric field intensity inside a cavity is zero, even if the shell is not spherical and has any irregular shape. Take a closed loop such that a part of it is inside the cavity along a field line while the rest is inside the conductor. Net work done by the field in carrying a test charge over a closed loop is zero because the field inside the conductor is zero. Hence, electric field is zero, whatever is the shape.