स्प्रिंग् नियतांक $K$ की एक स्प्रिंग् पर $m$ द्रव्यमान लटकाया गया है। अब ​स्प्रिंग् को दो बराबर भागों में काटकर किसी एक पर वही द्रव्यमान लटकाया जाता है, तो नया ​स्प्रिंग् नियतांक होगा

  • A

    $\frac{K}{2}$

  • B

    $K$

  • C

    $2K$

  • D

    ${K^2}$

Similar Questions

एक स्प्रिंग तुला की स्केल $0$ से  $10\, kg$ तक मापन करती है तथा इसकी लम्बाई $0.25\, m$ है। स्प्रिंग तुला से लटकी हुई एक वस्तु $\frac{\pi }{{10}}\sec$ के आवर्तकाल से ऊध्र्वाधर दोलन करती है। लटकी हुई वस्तु का द्रव्यमान ..... $kg$ होगा, (स्प्रिंग का द्रव्यमान नगण्य है) 

$1200\, N\, m ^{-1}$ कमानी-स्थिरांक की कोई कमानी चित्र में दर्शाए अनुसार किसी क्षैतिज मेज से जड़ी है। कमानी के मुक्त सिरे से $3\, kg$ द्रव्यमान का कोई पिण्ड जुड़ा है । इस पिण्ड को एक ओर $2.0\, cm$ दूरी तक खींच कर मुक्त किया जाता है,

$(i)$ पिण्ड के दोलन की आवृत्ति,

$(ii)$ पिण्ड का अधिकतम त्वरण, तथा

$(iii)$ पिण्ड की अधिकतम चाल ज्ञात कीजिए

एक स्प्रिंग से जुड़ा हुआ $1 \;kg$ का एक गुटका $1 \;Hz$ की आवृत्ति से एक घर्षणहीन क्षैतिज मेज पर दोलन करता है। इसी तरह की दो समान्तर स्प्रिंगों से एक $8 \;kg$ का गुटका जोड़कर उसी मेज पर दोलन कराते हैं। $8 \;kg$ के गुटके की दोलन आवृत्ति होगी $\dots \; Hz$

  • [JEE MAIN 2017]

दो द्रव्यमान $M _{ A }$ तथा $M _{ B }$ को दो तारों, जिनकी लम्बाइयां $L _{ A }$ तथा $L _{ B }$ है, से लटकाने पर सरल आवर्तगतियां करते है। यदि इनकी आवर्तियों में संबंध $f _{ A }=2 f _{ B }$ हो तो

  • [AIPMT 2000]

अभ्यास में, मान लीजिए जब कमानी अतानित अवस्था में है तब पिण्ड की स्थिति $x=0$ है तथा बाएँ से दाएँ की दिशा $x-$ अक्ष की धनात्मक दिशा है । दोलन करते पिण्ड के विस्थापन $x$ को समय के फलन के रूप मे दर्शाइए, जबकि विराम घड़ी को आरंभ $(t=0)$ करते समय पिण्ड,

$(a)$ अपनी माध्य स्थिति,

$(b)$ अधिकतम तानित स्थिति, तथा

$(c)$ अधिकतम संपीडन की स्थिति पर है ।

सरल आवर्त गति के लिए ये फलन एक दूसरे से आवृत्ति में, आयाम में अथवा आरंभिक कला में किस रूप में भिन्न हैं ?