चित्र में ${S_1}$ व ${S_2}$ दो सर्वसम स्प्रिंग् हैं। द्रव्यमान $m$ की दोलन आवृत्ति $f$ है। यदि एक स्प्रिंग् को हटा दिया जाये तो आवृत्ति हो जायेगी

94-13

  • A

    $f$

  • B

    $f \times 2$

  • C

    $f \times \sqrt 2 $

  • D

    $f/\sqrt 2 $

Similar Questions

एक द्रव्यमान $m$ को ${K_1}$ व ${K_2}$ बल नियतांक वाली दो स्प्रिंगों से अलग-अलग लटकाने पर इनकी सरल आवर्त गतियों के आवर्तकाल क्रमश: ${t_1}$ व ${t_2}$ हैं। यदि उसी द्रव्यमान $m$ को चित्रानुसार दोनों स्प्रिंगों से लटकाया जाये तो इसकी सरल आवर्त गति के आवर्तकाल $t$ के लिए सही सम्बन्ध है

  • [AIPMT 2002]

चार द्रव्यमान रहित स्प्रिंगों के बल नियतांक क्रमश: $2k, 2k, k$ एवं $2k$ हैं। ये चित्रानुसार घर्षण रहित तल पर स्थित एक द्रव्यमान $M$ से जुड़ी है। यदि द्रव्यमान $M$ को क्षैतिज दिशा में विस्थापित कर दिया जाये तब दोलनों का आवर्तकाल होगा

$K$ बल नियतांक वाली एक स्प्रिंग का एक-चौथाई भाग काट कर अलग कर दिया जाता है। शेष स्प्रिंग का बल नियतांक होगा

एक ​स्प्रिंग का ​स्प्रिंग नियतांक $10\,N/m$ है यह स्प्रिंग $10\,kg$ द्रव्यमान के साथ सरल आवर्त गति करती है, यदि किसी क्षण पर इसका वेग $40\,cm/sec$ है तो इस स्थिति में इसका विस्थापन ..... $m$ होगा (यहाँ आयाम $0.5\,m$ है)

दो स्प्रिंग जिनके बल नियतांक ${K_1} = 1500\,N/m$ तथा  ${K_2} = 3000\,N/m$ है, समान बल से खींची जाती है। तो स्प्रिंगों में संचित स्थितिज ऊर्जाओं का अनुपात होगा