A steel wire $1.5\,m$ long and of radius $1\,mm$ is attached with a load $3\,kg$ at one end the other end of the wire is fixed it is whirled in a vertical circle with a frequency $2\,Hz$ . Find the elongation of the wire when the weight is at the lowest position $(Y = 2 \times 10^{11}\,N/m^2$ and $g = 10\,m/s^2)$
$1.77 \times 10^{-3}\,m$
$7.17 \times 10^{-3}\,m$
$3.17 \times 10^{-7}\,m$
$1.37 \times 10^{-7}\,m$
A force of $200\, N$ is applied at one end of a wire of length $2\, m$ and having area of cross-section ${10^{ - 2}}\,c{m^2}$. The other end of the wire is rigidly fixed. If coefficient of linear expansion of the wire $\alpha = 8 \times 10{^{-6}}°C^{-1}$ and Young's modulus $Y = 2.2 \times {10^{11}}\,N/{m^2}$ and its temperature is increased by $5°C$, then the increase in the tension of the wire will be ........ $N$
A steel wire is stretched with a definite load. If the Young's modulus of the wire is $Y$. For decreasing the value of $Y$
A mild steel wire of length $1.0 \;m$ and cross-sectional area $0.50 \times 10^{-2} \;cm ^{2}$ is stretched, well within its elastic limit, horizontally between two pillars. A mass of $100 \;g$ is suspended from the mid-point of the wire. Calculate the depression at the midpoint.
A steel uniform rod of length $2L$ cross sectional area $A$ and mass $M$ is set rotating in a horizontal plane about an axis passing through the centre. If $Y$ is the Young’s modulus for steel, find the extension in the length of the rod.
When a certain weight is suspended from a long uniform wire, its length increases by one cm. If the same weight is suspended from another wire of the same material and length but having a diameter half of the first one then the increase in length will be ........ $cm$