Figure shows graph between stress and strain for a uniform wire at two different femperatures. Then

212410-q

  • A

    $T_2 > T_1$

  • B

    $T_1 > T_2$

  • C

    $T_1 = T_2$

  • D

    None of these

Similar Questions

A uniformly tapering conical wire is made from a material of Young's modulus $Y$  and has a normal, unextended length $L.$ The radii, at the upper and lower ends of this conical wire, have values $R$ and $3R,$  respectively. The upper end of the wire is fixed to a rigid support and a mass $M$ is suspended from its lower end. The equilibrium extended length, of this wire, would equal 

  • [JEE MAIN 2016]

The Young’s modulus for steel is much more than that for rubber. For the same longitudinal strain, which one will have greater tensile stress ?

In an experiment to determine the Young's modulus, steel wires of five different lengths $(1,2,3,4$ and $5\,m )$ but of same cross section $\left(2\,mm ^{2}\right)$ were taken and curves between extension and load were obtained. The slope (extension/load) of the curves were plotted with the wire length and the following graph is obtained. If the Young's modulus of given steel wires is $x \times 10^{11}\,Nm ^{-2}$, then the value of $x$ is

  • [JEE MAIN 2022]

A rod is fixed between two points at $20°C$. The coefficient of linear expansion of material of rod is $1.1 \times {10^{ - 5}}/^\circ C$ and Young's modulus is $1.2 \times {10^{11}}\,N/m$. Find the stress developed in the rod if temperature of rod becomes $10°C$

Young's modulus depends upon