A stone of mass $20\, {g}$ is projected from a rubber catapult of length $0.1\, {m}$ and area of cross section $10^{-6} \,{m}^{2}$ stretched by an amount $0.04\, {m}$. The velocity of the projected stone is $....\,m\,/s.$ (Young's modulus of rubber $=0.5 \times 10^{9}\, {N} / {m}^{2}$ )
$10$
$15$
$25$
$20$
The strain energy stored in a body of volume $V$ due to shear strain $\phi$ is (shear modulus is $\eta$ )
When shearing force is applied on a body, then the elastic potential energy is stored in it. On removing the force, this energy
If one end of a wire is fixed with a rigid support and the other end is stretched by a force of $10 \,N,$ then the increase in length is $0.5\, mm$. The ratio of the energy of the wire and the work done in displacing it through $1.5\, mm$ by the weight is
A wire $2 \,m$ in length suspended vertically stretches by $10 \,mm$ when mass of $10 \,kg$ is attached to the lower end. The elastic potential energy gain by the wire is ...... $J$ (take $g=10 \,m / s ^2$ )
A metallic rod of length $I$ and cross-sectional area $A$ is made of a material of Young's modulus $Y$. If the rod is elongated by an amount $y$, then the work done is proportional to ......