5.Work, Energy, Power and Collision
hard

A stone tied to a string of length $L$ is whirled in a vertical circle with the other end of the string at the centre. At a certain instant of time, the stone is at its lowest position and has a speed $u$. The magnitude of the change in its velocity as it reaches a position where the string is horizontal is

A

$\sqrt {{u^2} - 2gL} $

B

$\sqrt {2gL} $

C

$\sqrt {{u^2} - gl} $

D

$\sqrt {2({u^2} - gL)} $

(IIT-1998) (AIPMT-2004)

Solution

(d) $\frac{1}{2}m{u^2} – \frac{1}{2}m{v^2} = mgL$

$⇒$  $v = \sqrt {{u^2} – 2gL} $

$|\vec v – \vec u|\, = \sqrt {{u^2} + {v^2}} = \sqrt {{u^2} + {u^2} – 2gL} = \sqrt {2({u^2} – gL)} $

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.