A straight line through the point $(1, 1)$ meets the $x$-axis at ‘$A$’ and the $y$-axis at ‘$B$’. The locus of the mid-point of $AB$ is
$2xy + x + y = 0$
$x + y - 2xy = 0$
$x + y + 2 = 0$
$x + y - 2 = 0$
Two sides of a parallelogram are along the lines, $x + y = 3$ and $x -y + 3 = 0$. If its diagonals intersect at $(2, 4)$, then one of its vertex is
Find the area of the triangle formed by the line $y-x=0, x+y=0$ and $x-k=0$.
If the sum of the distances of a point from two perpendicular lines in a plane is $1$, then its locus is
A variable straight line passes through the points of intersection of the lines, $x + 2y = 1$ and $2x - y = 1$ and meets the co-ordinate axes in $A\,\, \&\,\, B$ . The locus of the middle point of $AB$ is :
In an isosceles triangle $ABC, \angle C = \angle A$ if point of intersection of bisectors of internal angles $\angle A$ and $\angle C$ divide median of side $AC$ in $3 : 1$ (from vertex $B$ to side $AC$), then value of $cosec \ \frac{B}{2}$ is equal to