Gujarati
9.Straight Line
hard

A straight line through the point $(1, 1)$ meets the $x$-axis at ‘$A$’ and the $y$-axis at ‘$B$’. The locus of the mid-point of $AB$ is

A

$2xy + x + y = 0$

B

$x + y - 2xy = 0$

C

$x + y + 2 = 0$

D

$x + y - 2 = 0$

Solution

(b) Equation of line passing through point $(1, 1)$ is,

$y – 1 = m(x – 1)$……$(i)$

Line $(i)$ meets x-axis, so $y = 0$

$\therefore $ $\frac{{ – 1}}{m} = x – 1 \Rightarrow x = 1 – \frac{1}{m}$

Line $(i)$ meets y-axis, so $x = 0$

$\therefore $ $y – 1 = – m \Rightarrow y = 1 – m$

Let mid point of $AB$ be $(h, k)$,

Then $h = \frac{{0 + (1 – (1/m))}}{2}$;$k = \frac{{0 + (1 – m)}}{2}$

$m = \frac{1}{{1 – 2h}}$ ; $m = 1 – 2k$

 $1 – 2k = \frac{1}{{1 – 2h}}$

==> $1 – 2k – 2h + 4hk = 1$

==> $ – 2h – 2k + 4hk = 0$

Hence the Locus of mid point is, $x + y – 2xy = 0$.

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.