- Home
- Standard 11
- Physics
14.Waves and Sound
normal
A string of mass $M$ and length $L$ hangs freely from a fixed point. The velocity of transverse wave along the string at a distance $'x'$ from the free end will be
A
$\sqrt {gx} $
B
$\sqrt {2gx} $
C
$2\sqrt {gx} $
D
$\sqrt {2g(L - x)} $
Solution
Let $T$ be the tension at a point distance $x$ from the free end. Then.
$T=$ (mass of $x$ meter length of string )$ \times {\rm{g}}$
$=\frac{\mathrm{M}}{\mathrm{L}} \mathrm{x} \cdot \mathrm{g}$
Velocity of transverse wave
$v=\sqrt{\frac{T}{m}}=\sqrt{\frac{M g x / L}{M / L}}=\sqrt{g x}$
Standard 11
Physics
Similar Questions
normal