A sound-source is moving in a circle and an observer is outside the circle at $O$ as shown in figure. If the frequencies as heard by the listener are $\nu _1, \nu _2$ and $\nu _3$ when the source is at $A, B$ and $C$ position, respectively, then

 

  • A

    ${\nu _1} = {\nu _2} > {\nu _3}$

  • B

    ${\nu _2} > {\nu _3} > {\nu _1}$

  • C

    ${\nu _1} > {\nu _2} > {\nu _3}$

  • D

    ${\nu _1} > {\nu _3} > {\nu _2}$

Similar Questions

Two vibrating tuning forks produce waves given by ${y_1} = 4\sin 500\pi t$ and ${y_2} = 2\sin 506\pi t.$  Number of beats produced per minute is

Fundamental frequency of sonometer wire is $n$. If the length, tension and diameter of wire are tripled, the new fundamental frequency is

A wave travelling along the $x-$ axis is described by the equation $y \,(x, t ) = 0.005\, cos \,\left( {\alpha x - \beta t} \right)$. If the wavelength and the time period of the wave are $0.08\,m$ and $2.0\, s$ respectively then $a$ and $b$ in appropriate units are

A train standing at the outer signal of a railway station blows a whistle of frequency $400\, Hz$ in still air. What is the frequency of the whistle for a platform observer when the train recedes from the platform with a speed of $10\, m/s$ ...... $Hz$ . (Speed of sound $= 340\, m/s$)

An organ pipe $P_1$ closed at one end vibrating in its first overtone. Another pipe $P_2$  open at both ends is vibrating in its third overtone. They are in a resonance with a  given tuning fork. The ratio of the length of $P_1$ to that of $P_2$ is