1.Units, Dimensions and Measurement
medium

A students measures the distance traversed in free fall of a body, the initially at rest, in a given time. He uses this data to estimate $g$ , the acceleration due to gravity . If the maximum percentage errors in measurement of the distance and the time are $e_1$ and $e_2$ respectively, the percentage error in the estimation of $g$ is 

A

$e_2-e_1$

B

$e_1+2{e_2}$

C

$e_1+e_2$

D

$e_1-2{e_2}$

(AIPMT-2010)

Solution

From, the, relation
$h = ut = \frac{1}{2}g{t^2}$
$h = \frac{1}{2}g{t^2}$$ \Rightarrow g = \frac{{2h}}{{{t^2}}}$ (body, initially, at, rest)

Taking, natural, log aritham, on, both, sides, we, get

$In\,g = In\,h – 2\,In\,t$

Differentiating, $\frac{{\Delta h}}{g} = \frac{{\Delta h}}{h}\, – 2\,\frac{{\Delta t}}{t}$
For, max imum, permissible, error,

or,${\left( {\frac{{\Delta g}}{g} \times 100} \right)_{\max }} = \left( {\frac{{\Delta h}}{h} \times 100} \right) + 2 \times \left( {\frac{{\Delta t}}{t} \times 100} \right)$

According, to, problem

$\frac{{\Delta h}}{h} \times 100{ = _{{e_1}}}\,and\,\frac{{\Delta t}}{t} \times 100{ = _{{e_2}}}$

Therefore, $( {\frac{{\Delta g}}{g} \times 100} )_{\max } = {e_1} + 2{e_2}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.