A physical quantity $'x'$ is calculated from the relation $x = \frac{{{a^2}{b^3}}}{{c\sqrt d }}$ in $a$,$b$,$c$ and $d$ are $2\%$, $1 \%$, $3\%$ and $4\%$ respectively, what is the percentage error in $x$.

  • A

    $ \pm 11\%$

  • B

    $ \pm 13\%$

  • C

    $ \pm 12\%$

  • D

    $ \pm 14\%$

Similar Questions

If the measurement errors in all the independent quantities are known, then it is possible to determine the error in any dependent quantity. This is done by the use of series expansion and truncating the expansion at the first power of the error. For example, consider the relation $z=x / y$. If the errors in $x, y$ and $z$ are $\Delta x, \Delta y$ and $\Delta z$, respectively, then

$z \pm \Delta z=\frac{x \pm \Delta x}{y \pm \Delta y}=\frac{x}{y}\left(1 \pm \frac{\Delta x}{x}\right)\left(1 \pm \frac{\Delta y}{y}\right)^{-1} .$

The series expansion for $\left(1 \pm \frac{\Delta y}{y}\right)^{-1}$, to first power in $\Delta y / y$, is $1 \mp(\Delta y / y)$. The relative errors in independent variables are always added. So the error in $z$ will be $\Delta z=z\left(\frac{\Delta x}{x}+\frac{\Delta y}{y}\right)$.

The above derivation makes the assumption that $\Delta x / x \ll<1, \Delta y / y \ll<1$. Therefore, the higher powers of these quantities are neglected.

($1$) Consider the ratio $r =\frac{(1- a )}{(1+ a )}$ to be determined by measuring a dimensionless quantity a.

If the error in the measurement of $a$ is $\Delta a (\Delta a / a \ll<1)$, then what is the error $\Delta r$ in

$(A)$ $\frac{\Delta a }{(1+ a )^2}$  $(B)$ $\frac{2 \Delta a }{(1+ a )^2}$  $(C)$ $\frac{2 \Delta a}{\left(1-a^2\right)}$  $(D)$ $\frac{2 a \Delta a}{\left(1-a^2\right)}$

($2$) In an experiment the initial number of radioactive nuclei is $3000$ . It is found that $1000 \pm$ 40 nuclei decayed in the first $1.0 s$. For $|x|<1$, In $(1+x)=x$ up to first power in $x$. The error $\Delta \lambda$, in the determination of the decay constant $\lambda$, in $s ^{-1}$, is

$(A) 0.04$  $(B) 0.03$  $(C) 0.02$  $(D) 0.01$

Give the answer or quetion ($1$) and ($2$)

  • [IIT 2018]

The energy of a system as a function of time $t$ is given as $E(t)=A^2 \exp (-\alpha t)$, where $\alpha=0.2 s ^{-1}$. The measurement of $A$ has an error of $1.25 \%$. If the error in the measurement of time is $1.50 \%$, the percentage error in the value of $E(t)$ at $t=5 s$ is

  • [IIT 2015]

Two resistances are given as $R _1=(10 \pm 0.5)\,\Omega$ and $R_2=(15 \pm 0.5)\, \Omega$. The percentage error in the measurement of equivalent resistance when they are connected in parallel is

  • [JEE MAIN 2023]

Out of absolute error, relative error and fractional error which has unit and which has no unit ?

If $x=10.0 \pm 0.1$ and $y=10.0 \pm 0.1$, then $2 x-2 y$ is equal to