Resistance of a given wire is obtained by measuring the current flowing in it and the voltage difference applied across it. If the percentage errors in the measurement of the current and the voltage difference are $3\%$ each, then error in the value of resistance of the wire is ........ $\%$
$3$
$6$
$0$
$1$
The period of oscillation of a simple pendulum is given by $T = 2\pi \sqrt {\frac{l}{g}} $ where $l$ is about $100 \,cm$ and is known to have $1\,mm$ accuracy. The period is about $2\,s$. The time of $100$ oscillations is measured by a stop watch of least count $0.1\, s$. The percentage error in $g$ is ......... $\%$
In the expression for time period $T$ of simple pendulum $T=2 \pi \sqrt{\frac{l}{g}}$, if the percentage error in time period $T$ and length $l$ are $2 \%$ and $2 \%$ respectively then percentage error in acceleration due to gravity $g$ is equal to ......... $\%$
If $P = \frac{{{A^3}}}{{{B^{5/2}}}}$ and $\Delta A$ is absolute error in $A$ and $\Delta B$ is absolute error in $B$ then absolute error $\Delta P$ in $P$ is
A physical quantity $P$ is related to four observables $a, b, c$ and $d$ as follows: $P=\frac{a^{2} b^{2}}{(\sqrt{c} d)}$ The percentage errors of measurement in $a, b, c$ and $d$ are $1 \%, 3 \%, 4 \%$ and $2 \%$ respectively. What is the percentage error in the quantity $P$ ? If the value of $P$ calculated using the above relation turns out to be $3.763,$ to what value should you round off the result?
A physical quantity $A$ is dependent on other four physical quantities $p, q, r$ and $s$ as given below $A=\frac{\sqrt{pq}}{r^2s^3} .$ The percentage error of measurement in $p, q, r$ and $s$ $1\%,$ $3\%,\,\, 0.5\%$ and $0.33\%$ respectively, then the maximum percentage error in $A$ is .......... $\%$