A tangent is drawn to the ellipse $\frac{{{x^2}}}{{32}} + \frac{{{y^2}}}{8} = 1$ from the point $A(8, 0)$ to touch the ellipse at point $P.$ If the normal at $P$ meets the major axis of ellipse at point $B,$ then the length $BC$ is equal to (where $C$ is centre of ellipse) - ............ $\mathrm{units}$

  • A

    $1$

  • B

    $2$

  • C

    $3$

  • D

    $4$

Similar Questions

If the length of the major axis of an ellipse is three times the length of its minor axis, then its eccentricity is

The number of values of $c$ such that line $y = cx + c$, $c \in R$ touches the curve $\frac{{{x^2}}}{4} + \frac{{{y^2}}}{1} = 1$ is

Consider the ellipse

$\frac{x^2}{4}+\frac{y^2}{3}=1$

Let $H (\alpha, 0), 0<\alpha<2$, be a point. A straight line drawn through $H$ parallel to the $y$-axis crosses the ellipse and its auxiliary circle at points $E$ and $F$ respectively, in the first quadrant. The tangent to the ellipse at the point $E$ intersects the positive $x$-axis at a point $G$. Suppose the straight line joining $F$ and the origin makes an angle $\phi$ with the positive $x$-axis.

$List-I$ $List-II$
If $\phi=\frac{\pi}{4}$, then the area of the triangle $F G H$ is ($P$) $\frac{(\sqrt{3}-1)^4}{8}$
If $\phi=\frac{\pi}{3}$, then the area of the triangle $F G H$ is ($Q$) $1$
If $\phi=\frac{\pi}{6}$, then the area of the triangle $F G H$ is ($R$) $\frac{3}{4}$
If $\phi=\frac{\pi}{12}$, then the area of the triangle $F G H$ is ($S$) $\frac{1}{2 \sqrt{3}}$
  ($T$) $\frac{3 \sqrt{3}}{2}$

The correct option is:

  • [IIT 2022]

If the length of the latus rectum of the ellipse $x^{2}+$ $4 y^{2}+2 x+8 y-\lambda=0$ is $4$ , and $l$ is the length of its major axis, then $\lambda+l$ is equal to$......$

  • [JEE MAIN 2022]

On the ellipse $4{x^2} + 9{y^2} = 1$, the points at which the tangents are parallel to the line $8x = 9y$ are

  • [IIT 1999]