Gujarati
Hindi
10-2. Parabola, Ellipse, Hyperbola
normal

A tangent is drawn to the ellipse $\frac{{{x^2}}}{{32}} + \frac{{{y^2}}}{8} = 1$ from the point $A(8, 0)$ to touch the ellipse at point $P.$ If the normal at $P$ meets the major axis of ellipse at point $B,$ then the length $BC$ is equal to (where $C$ is centre of ellipse) - ............ $\mathrm{units}$

A

$1$

B

$2$

C

$3$

D

$4$

Solution

$\frac{x^{2}}{32}+\frac{y^{2}}{8}=1$

from property

$\mathrm{CB} \cdot \mathrm{CA}=(\mathrm{CS})^{2}$

$=a^{2}-b^{2}$ (where $\mathrm{S}$ is focus of ellipse)

$\Rightarrow \quad \mathrm{CB} \cdot 8=32-8$

$\mathrm{CB}=\frac{24}{8} \Rightarrow \mathrm{CB}=3 \text { units }$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.