The locus of mid points of parts in between axes and tangents of ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ will be

  • A

    $\frac{{{a^2}}}{{{x^2}}} + \frac{{{b^2}}}{{{y^2}}} = 1$

  • B

    $\frac{{{a^2}}}{{{x^2}}} + \frac{{{b^2}}}{{{y^2}}} = 2$

  • C

    $\frac{{{a^2}}}{{{x^2}}} + \frac{{{b^2}}}{{{y^2}}} = 3$

  • D

    $\frac{{{a^2}}}{{{x^2}}} + \frac{{{b^2}}}{{{y^2}}} = 4$

Similar Questions

For an ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ with vertices $A$  and $ A', $ tangent drawn at the point $P$  in the first quadrant meets the $y-$axis in $Q $ and the chord $ A'P$ meets the $y-$axis in $M.$  If $ 'O' $ is the origin then $OQ^2 - MQ^2$  equals to

The area (in sq, units) of the quadrilateral formed by the tangents at the end points of the latera recta to the ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{5} = 1$ is :

  • [JEE MAIN 2015]

Define the collections $\left\{ E _1, E _2, E _3, \ldots ..\right\}$ of ellipses and $\left\{ R _1, K _2, K _3, \ldots ..\right\}$ of rectangles as follows : $E_1: \frac{x^2}{9}+\frac{y^2}{4}=1$

$K _1$ : rectangle of largest area, with sides parallel to the axes, inscribed in $E _1$;

$E_n$ : ellipse $\frac{x^2}{a_n^2}+\frac{y^2}{b_{n}^2}=1$ of largest area inscribed in $R_{n-1}, n>1$;

$R _{ n }$ : rectangle of largest area, with sides parallel to the axes, inscribed in $E _{ n }, n >1$.

Then which of the following options is/are correct?

$(1)$ The eccentricities of $E _{18}$ and $E _{19}$ are NOT equal

$(2)$ The distance of a focus from the centre in $E_9$ is $\frac{\sqrt{5}}{32}$

$(3)$ The length of latus rectum of $E_Q$ is $\frac{1}{6}$

$(4)$ $\sum_{n=1}^N\left(\right.$ area of $\left.R_2\right)<24$, for each positive integer $N$

  • [IIT 2019]

Let $P\left(x_1, y_1\right)$ and $Q\left(x_2, y_2\right), y_1<0, y_2<0$, be the end points of the latus rectum of the ellipse $x^2+4 y^2=4$. The equations of parabolas with latus rectum $P Q$ are

$(A)$ $x^2+2 \sqrt{3} y=3+\sqrt{3}$

$(B)$ $x^2-2 \sqrt{3} y=3+\sqrt{3}$

$(C)$ $x^2+2 \sqrt{3} y=3-\sqrt{3}$

$(D)$ $x^2-2 \sqrt{3} y=3-\sqrt{3}$

  • [IIT 2008]

The line $lx + my - n = 0$ will be tangent to the ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$, if