The angle of intersection of ellipse $\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and circle ${x^2} + {y^2} = ab$, is
${\tan ^{ - 1}}\left( {\frac{{a - b}}{{ab}}} \right)$
${\tan ^{ - 1}}\left( {\frac{{a + b}}{{ab}}} \right)$
${\tan ^{ - 1}}\left( {\frac{{a + b}}{{\sqrt {ab} }}} \right)$
${\tan ^{ - 1}}\left( {\frac{{a - b}}{{\sqrt {ab} }}} \right)$
If the length of the major axis of an ellipse is three times the length of its minor axis, then its eccentricity is
An ellipse passes through the point $(-3, 1)$ and its eccentricity is $\sqrt {\frac{2}{5}} $. The equation of the ellipse is
For an ellipse $\frac{{{x^2}}}{9} + \frac{{{y^2}}}{4} = 1$ with vertices $A$ and $ A', $ tangent drawn at the point $P$ in the first quadrant meets the $y-$axis in $Q $ and the chord $ A'P$ meets the $y-$axis in $M.$ If $ 'O' $ is the origin then $OQ^2 - MQ^2$ equals to
P is any point on the ellipse $9{x^2} + 36{y^2} = 324$, whose foci are $S$ and $S’$. Then $SP + S'P$ equals
Two sets $A$ and $B$ are as under:
$A = \{ \left( {a,b} \right) \in R \times R:\left| {a - 5} \right| < 1 \,\,and\,\,\left| {b - 5} \right| < 1\} $; $B = \left\{ {\left( {a,b} \right) \in R \times R:4{{\left( {a - 6} \right)}^2} + 9{{\left( {b - 5} \right)}^2} \le 36} \right\}$ then : . . . . .