A tangent to the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{2} = 1$ meets $x-$ axis at $P$ and $y-$ axis at $Q$. Lines $PR$ and $QR$ are drawn such that $OPRQ$ is a rectangle (where $O$ is the origin). Then $R$ lies on
$\frac{4}{{{x^2}}} + \frac{2}{{{y^2}}} = 1$
$\frac{2}{{{x^2}}} - \frac{4}{{{y^2}}} = 1$
$\frac{2}{{{x^2}}} + \frac{4}{{{y^2}}} = 1$
$\frac{4}{{{x^2}}} - \frac{2}{{{y^2}}} = 1$
The foci of the ellipse $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{{{b^2}}} = 1$ and the hyperbola $\frac{{{x^2}}}{{144}} - \frac{{{y^2}}}{{81}} = \frac{1}{{25}}$ coincide. Then the value of $b^2$ is
The difference of the focal distance of any point on the hyperbola $9{x^2} - 16{y^2} = 144$, is
If $e$ and $e’$ are the eccentricities of the ellipse $5{x^2} + 9{y^2} = 45$ and the hyperbola $5{x^2} - 4{y^2} = 45$ respectively, then $ee' = $
The point $\mathrm{P}(-2 \sqrt{6}, \sqrt{3})$ lies on the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ having eccentricity $\frac{\sqrt{5}}{2} .$ If the tangent and normal at $\mathrm{P}$ to the hyperbola intersect its conjugate axis at the point $\mathrm{Q}$ and $\mathrm{R}$ respectively, then $QR$ is equal to :
A normal to the hyperbola, $4x^2 - 9y^2\, = 36$ meets the co-ordinate axes $x$ and $y$ at $A$ and $B$, respectively . If the parallelogram $OABP$ ( $O$ being the origin) is formed, then the locus of $P$ is