10-2. Parabola, Ellipse, Hyperbola
hard

A tangent to the hyperbola $\frac{{{x^2}}}{4} - \frac{{{y^2}}}{2} = 1$ meets $x-$ axis at $P$ and $y-$ axis at $Q$. Lines $PR$ and $QR$ are drawn such that $OPRQ$ is a rectangle (where $O$ is the origin). Then $R$ lies on

A

$\frac{4}{{{x^2}}} + \frac{2}{{{y^2}}} = 1$

B

$\frac{2}{{{x^2}}} - \frac{4}{{{y^2}}} = 1$

C

$\frac{2}{{{x^2}}} + \frac{4}{{{y^2}}} = 1$

D

$\frac{4}{{{x^2}}} - \frac{2}{{{y^2}}} = 1$

(JEE MAIN-2013)

Solution

equation of the tangent at the point $'\theta '$ is

$\frac{{x\sec \theta }}{a} – \frac{{y\tan \theta }}{b} = 1$

$ \Rightarrow P = \left( {a\cos \theta ,0} \right)\,\,\,\,Q = \left( {0, – b\cot \theta } \right)$ 

Let $R$ be $\left( {h,k} \right) \Rightarrow h = a\cos \theta ,k =  – b\cot \theta $

$ \Rightarrow \frac{k}{h} = \frac{{ – b}}{{a\sin \theta }} \Rightarrow \sin \theta  = \frac{{ – bh}}{{ak}}$

$\cos \theta  = \frac{h}{a}$

By squaring and adding,

$\frac{{{b^2}{h^2}}}{{{a^2}{k^2}}} + \frac{{{h^2}}}{{{a^2}}} = 1$

$ \Rightarrow \frac{{{b^2}}}{{{k^2}}} + 1 = \frac{{{a^2}}}{{{h^2}}}$

$ \Rightarrow \frac{{{a^2}}}{{{h^2}}} – \frac{{{b^2}}}{{{k^2}}} = 1$

Now, given $e{q^n}$ of hyperbola is $\frac{{{x^2}}}{4} – \frac{{{y^2}}}{2} = 1$

$ \Rightarrow {a^2} = 4,{b^2} = 2$

$\therefore $ $R$ lies on $\frac{{{a^2}}}{{{x^2}}} – \frac{{{b^2}}}{{{y^2}}} = 1$ i.e., $\frac{4}{{{x^2}}} – \frac{2}{{{y^2}}} = 1$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.