- Home
- Standard 11
- Mathematics
10-2. Parabola, Ellipse, Hyperbola
normal
The values of parameter $'a'$ such that the line $\left( {{{\log }_2}\left( {1 + 5a - {a^2}} \right)} \right)x - 5y - \left( {{a^2} - 5} \right) = 0$ is a normal to the curve $xy = 1$ , may lie in the interval
A
$\left( { - \infty ,0} \right)$
B
$(0, 5)$
C
$(5, 10)$
D
$\left( {10,\infty } \right)$
Solution
Given curve is $y=\frac{1}{x} $
$\Rightarrow \frac{d y}{d x}=-\frac{1}{x^{2}}$
$\therefore $ slope of normal $\left.=x^{2}>0 \text { (As } x \neq 0\right)$
$\therefore $ slope of given line $=\frac{\log _{2}\left(1+5 a-a^{2}\right)}{5}>0$
$\Rightarrow \log _{2}\left(1+5 \mathrm{a}-\mathrm{a}^{2}\right)>0 $
$\Rightarrow 1+5 \mathrm{a}-\mathrm{a}^{2}>1$
$\Rightarrow a^{2}-5 a<0$
Hence $a$ $\in(0,5)$
Standard 11
Mathematics