The values of parameter $'a'$ such that the line $\left( {{{\log }_2}\left( {1 + 5a - {a^2}} \right)} \right)x - 5y - \left( {{a^2} - 5} \right) = 0$ is a normal to the curve $xy = 1$ , may lie in the interval

  • A

    $\left( { - \infty ,0} \right)$

  • B

    $(0, 5)$

  • C

    $(5, 10)$

  • D

    $\left( {10,\infty } \right)$

Similar Questions

If for a hyperbola the ratio of length of conjugate Axis to the length of transverse  axis is $3 : 2$ then the ratio of distance between the focii to the distance between the two directrices is

Let $a$ and $b$ be positive real numbers such that $a > 1$ and $b < a$. Let $P$ be a point in the first quadrant that lies on the hyperbola $\frac{ x ^2}{ a ^2}-\frac{ y ^2}{ b ^2}=1$. Suppose the tangent to the hyperbola at $P$ passes through the point $(1,0)$, and suppose the normal to the hyperbola at $P$ cuts off equal intercepts on the coordinate axes. Let $\Delta$ denote the area of the triangle formed by the tangent at $P$, the normal at $P$ and the $x$-axis. If $e$ denotes the eccentricity of the hyperbola, then which of the following statements is/are $TRUE$?

$(A)$ $1 < e < \sqrt{2}$

$(B)$ $\sqrt{2} < e < 2$

$(C)$ $\Delta=a^4$

$(D)$ $\Delta=b^4$

  • [IIT 2020]

If the latus rectum of an hyperbola be 8 and eccentricity be $3/\sqrt 5 $, then the equation of the hyperbola is

If $5{x^2} + \lambda {y^2} = 20$ represents a rectangular hyperbola, then $\lambda $ equals

The eccentricity of the hyperbola can never be equal to