- Home
- Standard 11
- Physics
12.Kinetic Theory of Gases
normal
A thermally insulated vessel contains an ideal gas of molecular mass $M$ and ratio of specific heats $\gamma $ . It is moving with speed $v$ and is suddenly broght to rest. Assuming no heat is lost to the surroundings, its temperature increases by
A
$\frac{{\gamma M{v^2}}}{{2R}}$
B
$\frac{{\left( {\gamma - 1} \right)}}{{2R}}\,M{v^2}$
C
$\frac{{\left( {\gamma - 1} \right)}}{{2\left( {\gamma + 1} \right)R}}\,M{v^2}$
D
$\frac{{\left( {\gamma - 1} \right)}}{{2\gamma R}}\,M{v^2}$
Solution
$\frac{1}{2} \mathrm{mv}^{2}=\mathrm{nC}_{\mathrm{v}} \Delta \mathrm{T}$
$\frac{1}{2} \mathrm{mv}^{2}=\frac{\mathrm{m}}{\mathrm{M}}\left(\frac{\mathrm{R}}{\gamma-1}\right) \Delta \mathrm{T}$
$\Delta {\rm{T}} = \frac{{{\rm{M}}(\gamma – 1){{\rm{v}}^2}}}{{2{\rm{R}}}}{\rm{T}}$
Standard 11
Physics