6.System of Particles and Rotational Motion
hard

A thin rod $MN$, free to rotate in the vertical plane about the fixed end $N$, is held horizontal . When the end $M$ is released the speed of this end, when the rod makes an angle $\alpha $ with the horizontal, will be proportional to ( see figure)

A

$\sqrt {\cos \alpha } $

B

$\cos \alpha $

C

$\sin \alpha $

D

$\sqrt {\sin \alpha } $

(JEE MAIN-2018)

Solution

When the rod makes an angle $\alpha $

Displacement of center of mass $ = \frac{1}{2}\cos \,\alpha $

$mg\frac{1}{2}\cos \alpha  = \frac{l}{2}I{\omega ^2}\,$

$mg\frac{1}{2}\cos \alpha  = \frac{{m{l^2}}}{6}{\omega ^2}$ (M.I. of thin uniform rod about an axis passing through its center of mass and perpendicular to the rod $I = \frac{{m{l^2}}}{{12}}$)

$ \Rightarrow \omega  = \sqrt {\frac{{3g\cos \alpha }}{l}} $

speed of end $ = \omega  \times l = \sqrt {3g\cos \alpha l} $

i.e., Speed of end, $\omega \, \propto \,\sqrt {\cos \alpha } $

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.