- Home
- Standard 11
- Physics
6.System of Particles and Rotational Motion
hard
A mass $m$ hangs with the help of a string wrapped around a pulley on a frictionless bearing. The pulley has mass m and radius $R$. Assuming pulley to be a perfect uniform circular disc, the acceleration of the mass $m$, if the string does not slip on the pulley, is
A
$\;\frac{3}{2}g$
B
$g$
C
$\;\frac{2}{3}g$
D
$\;\frac{g}{3}$
(AIEEE-2011)
Solution

For translational motion,
$mg – T = ma$ $ ….(1)$
For rotational motion,
$T.R = I$ $\alpha = I\frac{a}{R}$
Solving $(1) \& (2),$
$a = \frac{{mg}}{{\left( {m + \frac{I}{{{R^2}}}} \right)}} = \frac{{mg}}{{m + \frac{{m{R^2}}}{{2{R^2}}}}} = \frac{{2mg}}{{3m}} = \frac{{2g}}{3}$
Standard 11
Physics