- Home
- Standard 11
- Physics
14.Waves and Sound
normal
A tuning of fork of frequency $392\, Hz$, resonates with $50\, cm$ length of a string under tension $(T)$. If length of the string is decreased by $2\%$, keeping the tension constant, the number of beats heard when the string and the tuning fork made to vibrate simultaneously is
A
$4$
B
$6$
C
$8$
D
$12$
Solution
$\mathrm{n} \propto \frac{1}{\ell} \Rightarrow \frac{\Delta \mathrm{n}}{\mathrm{n}}=-\frac{\Delta \ell}{\ell}$
If length is decreased by $2 \%$ then frequency
increases by $2 \%,$ i.e., $\frac{\mathrm{n}_{2}-\mathrm{n}_{1}}{\mathrm{n}_{1}}=\frac{2}{100}$
$\Rightarrow \mathrm{n}_{2}-\mathrm{n}_{1}=\frac{2}{100} \times \mathrm{n}_{1}=\frac{2}{100} \times 392=7.8 \approx 8$
Standard 11
Physics