A two point charges $4 q$ and $-q$ are fixed on the $x-$axis at $x=-\frac{d}{2}$ and $x=\frac{d}{2},$ respectively. If a third point charge $'q'$ is taken from the origin to $x = d$ along the semicircle as shown in the figure, the energy of the charge will
increase by $\frac{2 q^{2}}{3 \pi \varepsilon_{0} d }$
increase by $\frac{3 q^{2}}{4 \pi \varepsilon_{0} d }$
decrease by $\frac{4 q^{2}}{3 \pi \varepsilon_{0} d }$
decrease by $\frac{q^{2}}{4 \pi \varepsilon_{0} d }$
Calculate potential energy of a point charge $-q$ placed along the axis due to a charge $+ Q$ uniformly distributed along a ring of radius $R$. Sketch $P.E.$ as a function of axial distance $z$ from the centre of the ring. Looking at graph, can you see what would happen if $-q$ is displaced slightly from the centre of the ring (along the axis) ?
Charges $+q$ and $-q$ are placed at points $A$ and $B$ respectively which are a distance $2\,L$ apart, $C$ is the midpoint between $A$ and $B.$ The work done in moving a charge $+Q$ along the semicircle $CRD$ is
A particle has a mass $400$ times than that of the electron and charge is double than that of a electron. It is accelerated by $5\,V$ of potential difference. Initially the particle was at rest, then its final kinetic energy will be......$eV$
The diagram shows three infinitely long uniform line charges placed on the $X, Y $ and $Z$ axis. The work done in moving a unit positive charge from $(1, 1, 1) $ to $(0, 1, 1) $ is equal to
Two points $P$ and $Q$ are maintained at the potentials of $10\ V$ and $- 4\ V$, respectively. The work done in moving $100$ electrons from $P$ to $Q$ is