6.System of Particles and Rotational Motion
medium

Obtain $\tau = I\alpha $ from angular momentum of rigid body. 

Option A
Option B
Option C
Option D

Solution

The total angular momentum of a motion of rigid body about a fixed axis $\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{L}_{z}}+\overrightarrow{\mathrm{L}_{\perp}}$

Differentiating w.r.t. time

$\frac{d \overrightarrow{\mathrm{L}}}{d t}=\frac{d \overrightarrow{\mathrm{L}}_{z}}{d t}+\frac{d \overrightarrow{\mathrm{L}_{\perp}}}{d t}$

but $\frac{d \overrightarrow{\mathrm{L}_{z}}}{d t}=\tau \hat{k}$ and $\frac{d \overrightarrow{\mathrm{L}_{\perp}}}{d t}=0$

$\therefore \frac{d \overrightarrow{\mathrm{L}}}{d t}=\tau \hat{k}$

but $\overrightarrow{\mathrm{L}_{\mathrm{Z}}}=\mathrm{I} \omega \hat{k}$

$\therefore \frac{d(\mathrm{I} \omega)}{d t}=\tau \hat{k}$

$\mathrm{I} \frac{d \omega}{d t}=\tau$

$\therefore \quad \overrightarrow{\mathrm{I} \alpha}=\vec{\tau} \Rightarrow \vec{\tau}=\mathrm{I} \vec{\alpha}$

Scalar form $\tau=\mathrm{I} \alpha$ is similar to $\mathrm{F}=m a$ in linear motion.

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.