- Home
- Standard 11
- Physics
8.Mechanical Properties of Solids
medium
A uniform rod of length $L$ has a mass per unit length $\lambda$ and area of cross-section $A$. If the Young's modulus of the rod is $Y$. Then elongation in the rod due to its own weight is ...........
A
$\frac{2 \lambda g L^2}{A Y}$
B
$\frac{\lambda g L^2}{2 A Y}$
C
$\frac{\lambda g L^2}{4 A Y}$
D
$\frac{\lambda g L^2}{A Y}$
Solution

(b)
Total mass can be assumed to be concentrated at center of mass at distance $\frac{L}{2}$ from top
$\frac{M}{L}=\lambda$
$M=\lambda L$
$\Delta x=\frac{F L / 2}{A Y}=\frac{1}{2} \times \frac{\lambda L^2 g}{A Y}$
Standard 11
Physics
Similar Questions
Column$-II$ is related to Column$-I$. Join them appropriately :
Column $-I$ | Column $-II$ |
$(a)$ When temperature raised Young’s modulus of body | $(i)$ Zero |
$(b)$ Young’s modulus for air | $(ii)$ Infinite |
$(iii)$ Decreases | |
$(iv)$Increases |
medium