Gujarati
Hindi
8.Mechanical Properties of Solids
hard

A uniform rod of mass $m$, length $L$, area of cross-section $A$ and Young's modulus $Y$ hangs from the ceiling. Its elongation under its own weight will be

A

Zero

B

$\frac {mgL}{2AY}$

C

$\frac {mgL}{AY}$

D

$\frac {2mgL}{AY}$

Solution

Mass of section $\mathrm{BC}=\frac{\mathrm{M}}{\mathrm{L}}(\mathrm{L}-\mathrm{y})$

$\text { Tension at } \mathrm{B}=\mathrm{T}=\frac{\mathrm{m}}{\mathrm{L}}(\mathrm{L}-\mathrm{y}) \mathrm{g}$

$\therefore$ Elongation of element dy at $\mathrm{B}$.

$\mathrm{dx}=\mathrm{dy} \frac{\mathrm{T}}{\mathrm{AY}}=\frac{\mathrm{m}}{\mathrm{L}}(\mathrm{L}-\mathrm{y}) \mathrm{g} \frac{\mathrm{dy}}{\mathrm{AY}}$

 Total elongation

$\mathrm{x}=\int \mathrm{dx}=\frac{\mathrm{mg}}{\mathrm{LAY}} \int_{0}^{\mathrm{L}}(\mathrm{L}-\mathrm{y}) \mathrm{dy}=\frac{\mathrm{mgL}}{2 \mathrm{YA}}$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.