2. Electric Potential and Capacitance
hard

A uniformly charged ring of radius $3a$ and total charge $q$ is placed in $xy-$ plane centered at origin. A point charge $q$ is moving towards the ring along the $z-$ axis and has speed $v$ at $z = 4a$. The minimum value of $v$ such that it crosses the origin is

A

$\sqrt {\frac{2}{m}} {\left( {\frac{1}{5}\frac{{{q^2}}}{{4\pi { \in _0}a}}} \right)^{1/2}}$

B

$\sqrt {\frac{2}{m}} {\left( {\frac{1}{15}\frac{{{q^2}}}{{4\pi { \in _0}a}}} \right)^{1/2}}$

C

$\sqrt {\frac{2}{m}} {\left( {\frac{4}{15}\frac{{{q^2}}}{{4\pi { \in _0}a}}} \right)^{1/2}}$

D

$\sqrt {\frac{2}{m}} {\left( {\frac{2}{15}\frac{{{q^2}}}{{4\pi { \in _0}a}}} \right)^{1/2}}$

(JEE MAIN-2019)

Solution

$\mathrm{U}_{\mathrm{i}}+\mathrm{K}_{\mathrm{i}}=\mathrm{U}_{\mathrm{f}}+\mathrm{K}_{\mathrm{f}}$

$\frac{\mathrm{kq}^{2}}{\sqrt{16 \mathrm{a}^{2}+9 \mathrm{a}^{2}}}+\frac{1}{2} \mathrm{mv}^{2}=\frac{\mathrm{kq}^{2}}{3 \mathrm{a}}$

$\frac{1}{2} m v^{2}=\frac{k q^{2}}{a}\left(\frac{1}{3}-\frac{1}{5}\right)=\frac{2 k q^{2}}{15 a}$

$v=\sqrt{\frac{4 k q^{2}}{15 m a}}$

Standard 12
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.