A value of $c$ for which conclusion of Mean Value Theorem holds for the function $f\left( x \right) = \log x$ on the interval $[1,3]$ is
$2{\log _3}e$
$\frac{1}{2}{\log _e}3$
$\;{\log _3}e$
${\log _e}3$
Examine the applicability of Mean Value Theorem:
$(i)$ $f(x)=[x]$ for $x \in[5,9]$
$(ii)$ $f(x)=[x]$ for $x \in[-2,2]$
$(iii)$ $f(x)=x^{2}-1$ for $x \in[1,2]$
Consider $f (x) = | 1 - x | \,;\,1 \le x \le 2 $ and $g (x) = f (x) + b sin\,\frac{\pi }{2}\,x$, $1 \le x \le 2$ then which of the following is correct ?
If $f: \mathrm{R} \rightarrow \mathrm{R}$ is a twice differentiable function such that $f^{\prime \prime}(x)>0$ for all $x \in \mathrm{R}$, and $f\left(\frac{1}{2}\right)=\frac{1}{2}, f(1)=1$, then
Which of the following function can satisfy Rolle's theorem ?
A value of $c$ for which the conclusion of mean value the theorem holds for the function $f(x) = log{_e}x$ on the interval $[1, 3]$ is