For a polynomial $g ( x )$ with real coefficient, let $m _{ g }$ denote the number of distinct real roots of $g ( x )$. Suppose $S$ is the set of polynomials with real coefficient defined by
$S=\left\{\left(x^2-1\right)^2\left(a_0+a_1 x+a_2 x^2+a_3 x^3\right): a_0, a_1, a_2, a_3 \in R\right\} \text {. }$
For a polynomial $f$, let $f^{\prime}$ and $f^{\prime \prime}$ denote its first and second order derivatives, respectively. Then the minimum possible value of $\left(m_f+m_{f^{\prime}}\right)$, where $f \in S$, is. . . . . . . .
$5$
$8$
$9$
$10$
$(i)$ $f (x)$ is continuous and defined for all real numbers
$(ii)$ $f '(-5) = 0 \,; \,f '(2)$ is not defined and $f '(4) = 0$
$(iii)$ $(-5, 12)$ is a point which lies on the graph of $f (x)$
$(iv)$ $f ''(2)$ is undefined, but $f ''(x)$ is negative everywhere else.
$(v)$ the signs of $f '(x)$ is given below
Possible graph of $y = f (x)$ is
If $f:[-5,5] \rightarrow \mathrm{R}$ is a differentiable function and if $f^{\prime}(x)$ does not vanish anywhere, then prove that $f(-5) \neq f(5).$
If $f$ and $g$ are differentiable functions in $[0, 1]$ satisfying $f\left( 0 \right) = 2 = g\left( 1 \right)\;,\;\;g\left( 0 \right) = 0,$ and $f\left( 1 \right) = 6,$ then for some $c \in \left] {0,1} \right[$ . .
Examine if Rolle's Theorem is applicable to any of the following functions. Can you say some thing about the converse of Roller's Theorem from these examples?
$f(x)=[x]$ for $x \in[-2,2]$
Let $f$ and $g$ be twice differentiable even functions on $(-2,2)$ such that $f\left(\frac{1}{4}\right)=0, f\left(\frac{1}{2}\right)=0, f(1)=1$ and $g\left(\frac{3}{4}\right)=0, g(1)=2$ Then, the minimum number of solutions of $f(x) g^{\prime \prime}(x)+f^{\prime}(x) g^{\prime}(x)=0$ in $(-2,2)$ is equal to