Gujarati
Hindi
10-1.Circle and System of Circles
normal

A variable line $ax + by + c = 0$, where $a, b, c$ are in $A.P.$, is normal to a circle $(x - \alpha)^2 + (y - \beta)^2 = \gamma$ , which is orthogonal to circle $x^2 + y^2- 4x- 4y-1 = 0$. The value of $\alpha + \beta + \gamma$ is equal to

A

$3$

B

$5$

C

$10$

D

$7$

Solution

$a x+b y+c=0$

$a+c=2 b \Rightarrow a-2 b+c=0$

${x=1, y=-2} $

${(1,-2)=(\alpha, \beta)}$

$(x-1)^{2}+(y+2)^{2}=\gamma$

$ \Rightarrow {x^2} + {y^2} – 2x + 4y + 5 – \gamma  = 0$

it is orthogonal to $x^{2}+y^{2}-4 x-4 y-1=0$

$\Rightarrow 4-8=5-\gamma-1$

$\gamma=8$

$\alpha+\beta+\gamma=1-2+8=7$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.