A variable line $ax + by + c = 0$, where $a, b, c$ are in $A.P.$, is normal to a circle $(x - \alpha)^2 + (y - \beta)^2 = \gamma$ , which is orthogonal to circle $x^2 + y^2- 4x- 4y-1 = 0$. The value of $\alpha + \beta + \gamma$ is equal to

  • A

    $3$

  • B

    $5$

  • C

    $10$

  • D

    $7$

Similar Questions

For the given circles ${x^2} + {y^2} - 6x - 2y + 1 = 0$ and ${x^2} + {y^2} + 2x - 8y + 13 = 0$, which of the following is true

The distance from the centre of the circle $x^2 + y^2 = 2x$ to the straight line passing  through the points of intersection of the two circles $x^2 + y^2 + 5x -8y + 1 =0$ and $x^2 + y^2-3x + 7y -25 = 0$ is-

The value of $'c'$ for which the set, $\{(x, y) | x^2 + y^2 + 2x \le 1 \} \cap \{(x, y) | x - y + c \ge 0\}$ contains only one point in common is :

Figure shows $\Delta  ABC$ with $AB = 3, AC = 4$  &  $BC = 5$. Three circles $S_1, S_2$  &  $S_3$ have their centres on $A, B  $ &  $C$ respectively and they externally touches each other. The sum of areas of three circles is

The equation of the circle having the lines ${x^2} + 2xy + 3x + 6y = 0$ as its normals and having size just sufficient to contain the circle $x(x - 4) + y(y - 3) = 0$is