A circle $C_1$ of radius $2$ touches both $x$ -axis and $y$ -axis. Another circle $C_2$ whose radius is greater than $2$ touches circle $C_1$ and both the axes. Then the radius of  circle $C_2$ is-

  • A

    $6 - 4 \sqrt 2$

  • B

    $6 + 4 \sqrt 2$

  • C

    $6 - 4 \sqrt 3$

  • D

    $6 + 4 \sqrt 3$

Similar Questions

If a circle $C$ passing through $(4, 0)$ touches the circle $x^2 + y^2 + 4x - 6y - 12 = 0$ externally at a point $(1, -1),$ then the radius of the circle $C$ is

  • [JEE MAIN 2013]

The circles ${x^2} + {y^2} - 10x + 16 = 0$ and ${x^2} + {y^2} = {r^2}$ intersect each other in two distinct points, if

  • [IIT 1994]

$P$ is a point $(a, b)$ in the first quadrant. If the two circles which pass through $P$ and touch both the co-ordinate axes cut at right angles, then :

The set of all real values of $\lambda $ for which exactly two common tangents can be drawn to the circles $x^2 + y^2 - 4x - 4y+ 6\, = 0$ and $x^2 + y^2 - 10x - 10y + \lambda \, = 0$ is the interval:

  • [JEE MAIN 2014]

The number of common tangent$(s)$ to the circles $x^2 + y^2 + 2x + 8y - 23 = 0$ and $x^2 + y^2 - 4x - 10y + 19 = 0$ is :