एक सदिश $\mathop {{F_1}}\limits^ \to $धनात्मक $X-$अक्ष के अनुदिश है। यदि इसका अन्य सदिश $\mathop {{F_2}}\limits^ \to $ के साथ सदिश गुणनफल शून्य हो तो $\mathop {{F_2}}\limits^ \to $ होगा
$4\hat j$
$ - (\hat i + \hat j)$
$(\hat j + \hat k)$
$( - 4\hat i)$
सदिश $a \hat{i}+b \hat{j}+\hat{k}$ और $2 \hat{i}-3 \hat{j}+4 \hat{k}$ एक दूसरे के लम्बवत् हैं जब $3 a+2 b=7$ है। $a$ और $b$ का अनुपात $\frac{x}{2}$ है। $x$ का मान ____________ है।
$(\overrightarrow A - \overrightarrow B )$ तथा $(\overrightarrow A \times \overrightarrow B )$ सदिशों के बीच कोण है $(\overrightarrow{ A } \neq \overrightarrow{ B })$
दो सदिशों $6\hat i + 6\hat j - 3\hat k$ तथा $7\hat i + 4\hat j + 4\hat k$ के बीच कोण है
दिया है $\left|\overrightarrow{ A }_{1}\right|=3,\left|\overrightarrow{ A }_{2}\right|=5$ तथा $\left|\overrightarrow{ A }_{1}+\overrightarrow{ A }_{2}\right|=5$ तो $\left(2 \overrightarrow{ A }_{1}+3 \overrightarrow{ A }_{2}\right) \cdot\left(3 \overrightarrow{ A }_{1}-2 \overrightarrow{ A }_{2}\right)$ का मान होगा ?
माना कि $\overrightarrow{ A }=(\hat{i}+\hat{j})$ एवं $\overrightarrow{ B }=(2 \hat{i}-\hat{j})$ है। एक समतल वेक्टर $\vec{C}$ इस प्रकार है कि $\overrightarrow{ A } \cdot \overrightarrow{ C }=\overrightarrow{ B } \cdot \overrightarrow{ C }=\overrightarrow{ A } \cdot \overrightarrow{ B }$, तो $\overrightarrow{ C }$ का परिमाण होगा