3-1.Vectors
medium

यदि $\overrightarrow{ A }=(2 \hat{ i }+3 \hat{ j }-\hat{ k }) m$ और $\overrightarrow{ B }=(\hat{ i }+2 \hat{ j }+2 \hat{ k })$ $m$ हैं। सदिश $\overrightarrow{ A }$ का, सदिश $\overrightarrow{ B }$ के अनुदिश घटक का परिमाण $........m$ होगा।

A

$2$

B

$1$

C

$3$

D

$4$

(JEE MAIN-2022)

Solution

$\overrightarrow{ A }=(2 \hat{ i }+3 \hat{ j }-\hat{ k }) m \text { and } \overrightarrow{ B }=(\hat{ i }+2 \hat{ j }+2 \hat{ k }) m$

Component of $\overrightarrow{ A }$ along $\overrightarrow{ B }=\overrightarrow{ A } \cdot \hat{ B }$

$=\frac{\overrightarrow{ A } \overrightarrow{ B }}{|\overrightarrow{ B }|}$ $=\frac{2+6-2}{\sqrt{1^{2}+2^{2}+2^{2}}}$

$=\frac{6}{3}=2$

Standard 11
Physics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.